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1 Introduction

The description of relativistic quantum systems at finite temperature plays a central role in

cosmology, astrophysics, plasma physics and in the physics of heavy-ion collisions. In the

latter context, the thermodynamics of Quantum Chromodynamics (QCD) is being studied

intensively by lattice Monte-Carlo methods [1–5] and by analytic [6, 7] and semi-analytic

methods [8]. The lattice calculations have to control both the discretization errors and the

finite volume effects. References [9–11] address the question of how to reduce the former

uncertainties. Here we address in some generality the finite-volume corrections to the en-

ergy density, entropy density and pressure calculated on a hypertorus of dimensions L3.

At the same time, the method we follow provides a complementary point of view on the

thermodynamics of the quantum field theory. This alternative interpretation might find

some use in approximate analytic treatments such as the variational method [12, 13].

Finite size effects in gauge theories have been studied before at weak coupling [14,

15]. In [16], an elegant calculation is presented that yields the finite-size effects for non-

interacting gauge bosons. For non-Abelian gauge theories at extremely high temperatures,

these finite-volume effects are indeed expected to be the leading ones in the regime 1/g ≫
LT ≫ 1 (L is the linear box size, T is the temperature and g is the gauge coupling). In

that regime, the effects of electric and magnetic screening [17] are absent. However, at

any finite temperature the asymptotic LT → ∞ finite-size effects must be exponentially
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suppressed by the finite, non-perturbative spatial correlation length. In other words the

finite-size corrections to the thermodynamic potentials are bound to be O(e−cg2TL), where

c is a number of order unity. At a few times the deconfining temperature Tc, the screening

masses are known to some extent from four-dimensional calculations, both in SU(3) gauge

theory [18, 19] and in full QCD [20]. And at much higher temperatures, the dimensional

reduction approach allows one to predict the temperature evolution of these correlation

lengths [21]. Choosing L large compared to the longest of these correlation lengths should

therefore ensure that finite-size effects are small.

In this paper we first reinterpret the finite-volume effects by using symmetry properties

of the Euclidean partition function and of the stress-energy tensor. We point out that

there is a generic dynamical regime, where the leading finite size effects can be expressed

completely in terms of the gap in the spatial screening spectrum and its derivative with

respect to temperature. This is possible because Tµν plays the dual role of stress-energy and

energy-momentum tensor: on the one hand its thermal expectation value gives the energy

density and pressure, on the other hand its diagonal matrix elements on an individual

state yield its energy and momentum. Since the screening gap can be calculated on the

lattice relatively easily, the formula we derive allows one to estimate the finite-size effects

in practice, and possibly to correct for them.

In section 2 we describe the thermodynamic potentials as expectation values of ele-

ments of the energy-momentum tensor and the dual interpretation of these matrix elements.

In section 3 we exploit this interpretation further to estimate the leading finite-size effects

on the thermodynamic potentials. Numerical applications to QCD are presented in section

4, and we finish with some concluding remarks (section 5).

2 Thermodynamic observables and their dual interpretation

We consider a relativistic theory in four space-time dimensions without chemical potentials

in Matsubara’s Euclidean formalism. Euclidean expectation values are denoted by 〈.〉. At

zero temperature and in infinite spatial volume, the system has a full SO(4) symmetry group

corresponding to the Lorentz group in Minkovsky space. As a consequence of translation

invariance, the theory possesses a conserved, symmetric energy-momentum tensor Tµν . We

will sometimes consider separately its traceless part and its trace θ, using the notation

Tµν = θµν +
1

4
θδµν , θµµ ≡ 0. (2.1)

The conserved charges measure energy and momentum, respectively, i.e. for a common

eigenstate of these operators, we have
∫

d3x T̂00(x)|Ψ〉 = E|Ψ〉 , (2.2)
∫

d3x T̂0k(x)|Ψ〉 = Pk|Ψ〉 . (2.3)

The partition function is Z =
∑

n e−βEn in terms of the eigenvalues of
∫

d3x T̂00, where

β ≡ 1/T is the inverse temperature. The pressure, energy density and entropy density are

– 2 –
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obtained from Z according to

p = T

(

∂ log Z

∂V

)

T

+cst, e =
T 2

V

(

∂ log Z

∂T

)

V

+cst , s =
1

V

(

∂(T log Z)

∂T

)

V

. (2.4)

We will exclusively be considering volumes V = L3, with periodic boundary conditions in

all four directions for bosons, and antiperiodic boundary conditions in all four directions for

fermions. The energy density and pressure are defined up to an additive constant, which

we choose such that both vanish at β = L. This is the standard choice in Monte-Carlo

simulations. We have (e − 3p)(β,L) = 〈θ〉β×L3 − 〈θ〉L4, (e + p)(β,L) = 4
3〈θ00〉β×L3 and,

in the limit L → ∞, s = β(e + p). We remark that one can define different operators

that play the role of energy-momentum tensor and lead to the same conserved charges [22].

But due to translation invariance, the Euclidean expectation values of the canonical and

the Belinfante energy-momentum tensor are identical, since they differ only by a total

derivative term [23].

In [24], using exact lattice QCD sum rules [25–27] we showed that if |Ψ〉 is a state of

definite energy E living in a periodic box L1 × L2 × L3,

〈Ψ|
∫

d3x θ̂00(x)|Ψ〉 =
3

4

[

1 − 1

3

3
∑

k=1

Lk
∂

∂Lk

]

E , (2.5)

〈Ψ|
∫

d3x θ̂(x)|Ψ〉 =

[

1 +

3
∑

k=1

Lk
∂

∂Lk

]

E , (2.6)

and one can similarly show that

〈Ψ|
∫

d3x θ̂33(x)|Ψ〉 = −1

4

[

1 − 4L3
∂

∂L3
+

3
∑

k=1

Lk
∂

∂Lk

]

E . (2.7)

The states are normalized such that 〈Ψ|Ψ〉 = 1.1 Strictly speaking, these equations hold

when taking the difference between two states. Note however that for |Ψ0〉 = the vacuum

state in infinite volume, 〈Ψ0|θ̂00|Ψ0〉 = 〈Ψ0|θ̂33|Ψ0〉 = 0 by Euclidean symmetry. Therefore

the energy appearing on the right-hand-side of eq. (2.5) and (2.7) can be thought of as the

energy of the state |Ψ〉 relative to the infinite-volume vacuum |Ψ0〉. For the operator θ, due

to its mixing with the unit operator one must always consider differences of matrix elements.

Finally, we expect relations eq. (2.5)–(2.7) to be true in other relativistic theories as well.

2.1 Interchanging the coordinate axes

Let us consider the expectation value of the operator θ00. Since θkk ≡ −θ00, in a β × L3

box we have 〈θij〉 = − δij

3 〈θ00〉. We now want to reinterpret the axis labels.2 The axis 3̂

will play the role of Euclidean time (with extent L), while the short 0̂ axis assumes the role

of a spatial direction (with extent β). In the expectation values below, we always indicate

the dimensions of the lattice (in the order 0̂, 1̂, 2̂, 3̂).

1In the infinite volume limit, one recovers from eq. (2.5)–(2.7) the Minkovsky-space result 〈Ψ|Tµν |Ψ〉 =

PµPν/M for covariantly normalized one-particle states, 〈Ψ|Ψ〉 = (E/M)L3.
2The idea of interchanging the coordinate axes in this way is of course not new, see for instance [28].
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In this new system of coordinates, the operator θ33 plays the role of the 00 component

of the same tensor,

〈θ00〉β×L3 = −3〈θ33〉β×L3 = −3〈θ00〉L×(L2β) . (2.8)

Next we apply formula (2.5) on the energy eigenstates of the β × L × L system. Note

that for a homogeneous state, by which we mean E ∝ L1L2L3, this expression vanishes.

However, we will apply this on the lowest-energy state of the β ×L ×L system. We write

the energy levels of that system Ẽ0, Ẽ1, Ẽ2 etc. ordered by increasing energy. We expect

the energy per unit volume to have a finite limit when L → ∞,

ẽ0(β) = lim
L→∞

(

Ẽ0(β)

βL2
− Ẽ0(L)

L3

)

. (2.9)

The energy density ẽ0(β) is thus measured relative to the infinite-space vacuum. In this

section we take the limit L → ∞ in eq. (2.8) and assume that therefore the expectation

value of a local operator is equal to its expectation value in the ground state of energy

Ẽ0. A sufficient condition for this is that there should be a spectral gap between Ẽ1 and

Ẽ0. By combining eq. (2.5) and eq. (2.8), we learn that the entropy density of the thermal

system corresponds to

s =
4β

3
〈θ00〉β×∞3 = β2 ∂ẽ0(β)

∂β
. (2.10)

Similarly, using eq. (2.6) one easily finds that

e − 3p = 4ẽ0(β) + β
∂ẽ0(β)

∂β
(2.11)

By taking a linear combination of the last two equations, we also obtain the ‘dual’ inter-

pretation of the pressure of the thermal system

p = −ẽ0(β) . (2.12)

For instance, in a regime where the system behaves in a scale-invariant way, s = cT 3 and

e − 3p = 0, the corresponding dual ground-state energy is given by

ẽ0(β) = − c

4β4
. (2.13)

We remark that finite-temperature phase transitions are mapped into quantum phase

transitions in this interpretation [29]. The vacuum energy ẽ0(β) has a non-analyticity at

a critical value of β equal to 1/Tc. This non-analyticity is typically due to an avoided

level-crossing.

3 Finite-volume effects on the thermodynamic potentials

We can exploit the dual interpretation of the partition function further to study the finite-

volume effects on the thermal system. Through a chain of relations, we successively relate

– 4 –
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the expectation value of the energy-momentum tensor on a β × L3 lattice to the same

expectation value on a β ×∞3 lattice. This allows us to arrive at a formula for the finite-

volume correction to the thermodynamic potentials. Starting with the thermal expectation

value of θ00, we successively write

− 1

3
〈θ00〉β×L3 = 〈θ33〉β×L3 = 〈θ00〉L×(L2×β) = 〈θ00〉∞×(L2×β) + K1 (3.1)

= 〈θ11〉L×(∞×L×β) + K1 = 〈θ11〉∞×(∞×L×β) + K1 + K2

= 〈θ00〉∞×(∞×L×β) + K1 + K2 = 〈θ22〉L×(∞×∞×β) + K1 + K2

= 〈θ22〉∞×(∞×∞×β) + K1 + K2 + K3 = −1

3
〈θ00〉β×∞3 + K1 + K2 + K3 .

A spectral representation for the Ki is obtained in appendix A, for instance

K1 =
1

βL2 Z eẼ0L

∑

n≥1

(

〈Ψ̃n|
∫

d3x θ̂00(x)|Ψ̃n〉 − 〈Ψ̃0|
∫

d3x θ̂00(x)|Ψ̃0〉
)

e−(Ẽn−Ẽ0)L , (3.2)

where the |Ψ̃n〉 and Ẽn are the eigenstates and energy levels of the β ×L2 system. We can

use eq. (3.1) to produce an expression for the finite-volume effects on the entropy density:

s =
4β

3
〈θ00〉β×∞3 =

4β

3
〈θ00〉β×L3 + 4β(K1 + K2 + K3) . (3.3)

Following the same steps as for the entropy density, we can obtain an expression for

the leading finite-volume effects on the interaction measure. This case is slightly simpler,

because the trace-anomaly operator is a Lorentz scalar:

〈θ〉β×L3 = 〈θ〉L×(L2×β) = 〈θ〉∞×(L2β) + J1 (3.4)

= 〈θ〉L×(∞×L×β) + J1 = 〈θ〉∞×(∞×L×β) + J1 + J2

= 〈θ〉L×(∞×∞×β) + J1 + J2 = 〈θ〉∞×(∞×∞×β) + J1 + J2 + J3

= 〈θ〉β×∞3 + J1 + J2 + J3 .

A definition for the Ji based on the spectral representation is given in appendix B. We can

apply the same reasoning to the L4 system, sending the extent of each direction in turn to

infinity. There are then four correction terms (Iµ) instead of three. Therefore we obtain

e − 3p= 〈θ〉β×∞3− 〈θ〉∞4 = 〈θ〉β×L3− 〈θ〉L4− (J1+ J2+ J3)+ (I0+ I1+ I2+ I3) . (3.5)

3.1 The case of finite and discrete screening masses

The general formulas (3.3) and (3.5) can be used together with the spectral definition of

the Iµ,Ji,Ki to predict the finite volume effects on the thermodynamic potentials. In the

following, we make a qualitative assumption on the spectrum of the theory on a β × L2

hypertorus with L ≫ β, which is in particular relevant to QCD at finite temperature.

We consider the case where the low-lying screening masses are discrete energy levels

of the β × L2 system. That is to say,

Lm ≡ L(Ẽ1 − Ẽ0) ≫ 1 (3.6)

– 5 –
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and the next energy levels are simply that same excitation with non-zero momentum in

the ‘transverse’ dimensions of size L,

ω(k⊥) =
√

m2 + k2
⊥, k⊥ =

2π

L
(n1, n2) , ni ∈ Z. (3.7)

This lightest screening excitation can potentially have a ν-fold degeneracy. The next screen-

ing mass is assumed to be separated by a gap from the lowest one, (m2 − m)L ≫ 1. In

that situation, the Ki and Ji can be evaluated in a simple fashion, since they receive con-

tributions only from one-‘particle’ states. We use particle in quotes because the lowest

excitations have only two components of momentum; higher up in the screening spectrum

one expects states with an additional energy of order 1/β.

We expect the scenario described above to apply in asymptotically free and conformal

non-Abelian gauge theories. For every relativistic theory, the appropriate regime must

be studied in order to correctly predict the leading finite-volume effects. As a counterex-

ample to the above scenario, it is well-known that magnetic fields are not screened in an

Abelian plasma.

Since we are interested in the leading finite-volume effects, in the remainder of this

section we write equations that hold up to terms of order max(e−2mL, e−m2L). In appendix

A, we calculate the corrections Ki=1,2,3 under these assumptions and find:

K1 =
ν e−mL

2πβL3

[

2 + 2mL +
3

4
m2L2 − mL2

4
β∂βm(β)

]

(3.8)

K2 = K3 = −ν e−mL

2πβL3

[

1 + mL +
1

4
m2L2 + mL2 β∂βm

4

]

(3.9)

Plugging these expressions into eq. (3.3), we obtain our final formula

s − 4β

3
〈θ00〉β×L3 =

mν e−mL

2πL
[m(β) − 3β∂βm(β)] + . . . (3.10)

It shows that the knowledge of the longest spatial correlation length 1/m as a function of

temperature T = 1/β allows one to compute the leading finite-volume corrections.

The corrections Iµ and Jk are computed in appendix B under the same assumptions

formulated above. The zero-temperature volume corrections Iµ are assumed to be due to

ν0 degenerate states of mass m0. We find to leading order

J1 = J2 = J3 =
m e−mL

2πβL
[m + β∂βm] (3.11)

I0 = I1 = I2 = I3 =
ν0 m3

0

2π2L
K1(m0L) , (3.12)

where K1 is the modified Bessel function, m0 is the mass gap of the theory on the hypertorus

of size L3, and ν0 is its degeneracy. For instance, in isospin-symmetric QCD there would

be ν0 = 3 pions. The final formula for the leading finite-volume effects on e − 3p follows,

e − 3p = 〈θ〉β×L3 − 〈θ〉L4 − 3mν e−mL

2πL
[m/β + ∂βm] +

2ν0m
3
0

π2L
K1(m0L) + . . . (3.13)

– 6 –



J
H
E
P
0
7
(
2
0
0
9
)
0
5
9

Combining eq. (3.13) and (3.10) with the thermodynamic identity Ts = e+p, we find that

the pressure p is the thermodynamic quantity with the simplest finite-volume effect:

p = −1

3

(

〈Tkk〉β×L3 − 〈Tkk〉L4

)

+
m2ν e−mL

2πLβ
− m3

0ν0

2π2L
K1(m0L) + . . . (3.14)

When the zero-temperature finite-volume corrections are negligible, the pressure computed

in finite volume is lower than in the thermodynamic limit. Note that in eq. (3.14) the

pressure p(L) is assumed to be obtained directly from the expectation value of Tkk. If p/T 4

is obtained with the so-called ‘integral method’ (see for instance [30]), i.e. by integrating

(e−3p)/T 4 over temperature starting at T = 0, one should go back to eq. (3.13) to compute

the finite-volume effects.

4 Applications

We give two examples where we expect the formulas derived above to apply.

4.1 Confined phase of SU(N) gauge theory

We first consider the pure SU(N) gauge theory (see [31] for a review of its properties).

Below the deconfining temperature Tc, the center symmetry associated with the direction of

length β is unbroken. Correspondingly, the expectation value of the Polyakov loop vanishes

even in the infinite spatial-volume limit. However, for N = 2 and 3 the correlation length

associated with the sector of non-zero winding number3 becomes very long as the critical

temperature is approached from below. In fact, in the case of SU(2) gauge theory, it even

diverges with the 3d Ising exponent [32]. For SU(3), the correlation length becomes very

long but remains finite. In [33], it was found that

m( 1
Tc

)/Tc = 0.53(4). (4.1)

We can use the reinterpretation of the partition function to estimate the leading finite-

volume effects on the pressure. At zero-temperature, the lightest state is the scalar glueball,

so ν0 = 1. Given its large mass, MG/Tc ≈ 5.3 [34, 35], it is not difficult to ensure that the

Iµ corrections are negligible by making the box size L large enough. We therefore have

p(Tc, L = ∞)

T 4
c

=
p(Tc, L)

T 4
c

+ δ , (4.2)

with

δ =
m2

T 2
c

e−(m/Tc)·LTc

2πLTc
= (0.0013, 0.00031) for LTc = (4, 6). (4.3)

In fact, the value of p(Tc)/T
4
c is not known precisely, but is most likely on the order of 0.02,

based on available numerical data [36], or on the pressure exerted by the known spectrum

of glueballs [37, 38], assuming that they are non-interacting. Therefore the correction at

LTc = 4 is not negligible if one aims at a precision of one percent on the pressure.

3For SU(3), the sector of winding number 2 is equivalent to the sector with winding number -1, which

by charge conjugation has the same correlation length as the +1 sector. Therefore there are only two sector

to discuss (winding 0 and +1).

– 7 –
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In order to predict the finite volume correction to the entropy density, we need an

estimate of the derivative of m with respect to β = 1/T . For a first idea of the order of

magnitude involved, we can use the Nambu-Goto formula [39–41] for m(β) = σeff(β)β with

σeff(β)

σ
=

[

1 − 2π

3

1

σβ2

]
1

2

, (4.4)

where σ is the string tension at T = 0, to estimate the derivative of the screening mass

with respect to β. The finite-volume effect is proportional to

m(m − 3β∂βm) = −2(m2 + πσ) . (4.5)

In particular, this quantity is negative, so the ‘effective’ entropy density computed in finite

volume decreases towards the infinite-volume limit (the sign is opposite to the volume

correction on the pressure). When m becomes small near Tc, the magnitude of the finite

volume effect on s is about σ e−mL

L . We can do a numerical application in the SU(3) case.

For LTc = 4, using the value of m(β) given in eq. (4.1) and Tc/
√

σ ≈ 0.64 [35], we get
σ e−mL

LT 3
c

≈ 0.08. Since s/T 3
c itself is about 0.2 [36, 42] (approaching from the confined phase),

this is a large effect indeed. A box size of LTc = 9 is required to reduce this finite-size

effect to one percent. This corresponds to a length L of about 6fm.

It would be interesting to know in what range of quark masses this large finite-volume

effect persists in full QCD, even though the center symmetry responsible for the existence of

the light mode is broken in the presence of quarks. In the case of two light flavors, the phase

transition corresponds to the restoration of chiral symmetry; it becomes second order in

the chiral limit. Therefore, at small quark masses we again expect a long correlation length

in the vicinity of Tc and potentially large volume effects. In practice, it is important for

the applicability of the finite-volume formulas that the exponent mL be large, as otherwise

corrections that are formally higher order can be important.

4.2 In the deconfined phase

Let us consider the SU(3) gauge theory in the deconfined phase. Above Tc, we know that

the smallest screening mass corresponds to a state invariant under all symmetries of the

theory in a β × L2 box [18, 19] and its value is [43]

βm(β) = 2.62(16), 2.83(16), 2.88(10) (4.6)

respectively at the temperatures 1.24Tc, 1.65Tc and 2.20Tc. Due to these large values of

the screening mass, the volume correction to the pressure appears to be negligible already

for LT = 4, δp/T 4 ≈ 8 · 10−6. Recall that the Stefan-Boltzmann pressure is pSB/T 4 =

8π2/45 ≃ 1.75 for N = 3, Nf = 0.

In the strongly coupled, large-N , N = 4 Super-Yang-Mills theory the screening masses

have been calculated by AdS/CFT methods [44, 45]. They turn out to be significantly larger

than in QCD, so that finite-volume effects would be even smaller for the same value of LT .

At asymptotic temperatures in both QCD and SU(3) gauge theory, the smallest screen-

ing mass corresponds to the A++
1 state of three-dimensional gauge theory, with a mass

– 8 –
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m/g2
3 ≈ 2.40 [21, 46], and g2

3 = g2(T )T to leading order. When the coupling reaches the

value it takes on the Z pole, αs ≈ 0.11, this means that δp/T 4 ≈ 8 · 10−7 for LT = 4. We

conclude that the aspect ratio LT has to be increased only very slowly with temperature

in order to accomodate the magnetic screening length 1/m ∼ 1/g2T .

5 Concluding remarks

We have derived a simple way to calculate the finite-volume effects affecting the energy

density and pressure of a relativistic theory at zero chemical potential in terms of the

spectrum of the same theory defined on a spatial hypercube with two large cycles and one

of length β = 1/T . When that spectrum is discrete, the leading finite-volume effects can

be calculated completely in terms of the mass gap. It is almost obvious that the finite

volume effects should be of order e−mL, but we have shown that the prefactor is also

entirely determined by the screening spectrum and its temperature dependence. This is

because the diagonal matrix elements of the energy-momentum tensor are themselves given

in terms of that spectrum (see eq. (2.5)–(2.7)).

It is hoped that eq. (3.10) and (3.13) will be useful in controlling the finite-volume

effects in lattice QCD thermodynamics calculations. If the screening mass gap is known

and a finite-volume study shows that the finite-size effects are well described by the formula,

one can use it to correct for these effects. If there are several screening masses below the

threshold of 2m(β), those states will contribute terms to the finite-size effects similar to

the lightest one. To include the effects of screening states above 2m(β), one presumably

needs to know the scattering length of these ‘particles’. In QCD at low temperatures,

explicit calculations using chiral perturbation theory are then likely to be predictive, since

information on the scattering lengths of pions is available.

It is clear that the method followed here is not specific to four dimensions. It also

applies for instance to three-dimensional gauge theories. The main difference is that the

transverse momentum of the lightest screening state only has one component, so that

momentum integrals as in eq. (A.6) become one-dimensional.

In SU(N) gauge theories, it is interesting to note the dependence of the finite vol-

ume effects of energy density and pressure on the number of colors N . We showed that

the asymptotic finite volume effect is driven by a unique color singlet state and that its

contribution is therefore O(N0). In the deconfined phase, the thermodynamic potentials

are O(N2), and the relative size of finite-volume effects is thus 1/N2 suppressed. This

conclusion remains qualitatively valid in the presence of quarks, since their main effect is

to add a contribution of order NNf to the thermodynamic potentials.

In the confined phase on the other hand, the thermodynamic potentials are O(N0),

so there is no parametric suppression of the volume effect there. Since on the lattice the

entropy density is simply computed as the difference between the 1×1 electric and magnetic

Wilson loops (‘plaquettes’), this might seem to contradict the statement that finite volume

effects on expectation values of Wilson loops vanish in the large-N limit as long as the

center symmetries remain intact. However the statement of volume-independence only

applies to the O(N2) contribution to the plaquette (see section 2.3 of [47] for a clear

– 9 –
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discussion); the latter is divergent in the continuum limit and cancels in the difference of

electric and magnetic plaquettes. Therefore there is no contradiction between our results

and the large-N volume-independence arguments.
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A Calculation of K1,2,3

In this appendix, we compute the quantities Ki that are the finite-time extent corrections

to certain expectation values of θµν . Let us start with K1, it is the difference between the

expectation value of 〈θ00〉 on a L × (L2 × β) lattice and on an ∞× (L2 × β) lattice. (In

this appendix, we drop the˜on the energies and states of the β×L2 system, and we set the

degeneracy ν of the energy level E1 to one, since the more general result is simply obtained

by multiplying K1 by ν.)

βL2〈θ00〉L×(L2×β) =
1

Z(L,L,L, β)

∑

n

e−EnL〈Ψn|
∫

d3x θ̂00(x)|Ψn〉 (A.1)

= 〈Ψ0|
∫

d3x θ̂00(x)|Ψ0〉

+
1

ZeE0L

∑

n≥1

(

〈Ψn|
∫

d3x θ̂00(x)|Ψn〉−〈Ψ0|
∫

d3x θ̂00(x)|Ψ0〉
)

e−(En−E0)L .

We now observe that

〈Ψ0|
∫

d3x θ̂00(x)|Ψ0〉 = βL2〈θ00〉∞×(L2×β) . (A.2)

We therefore identify K1 as (see eq. (3.1))

K1 =
1

βL2 Z eE0L

∑

n≥1

(

〈Ψn|
∫

d3x θ̂00(x)|Ψn〉 − 〈Ψ0|
∫

d3x θ̂00(x)|Ψ0〉
)

e−(En−E0)L .

(A.3)

We now assume that the lowest-lying excited states are ‘one-particle’ excitations with ar-

bitrary momentum in the two directions of length L. Let us therefore call m = E1−E0 the

energy of the first excited state, since it is at rest. By rotation symmetry among the three di-

mensions that are not of length β, the dispersion relation must be relativistic and we define

ω(k) ≡
√

m2 + k2 . (A.4)

Here k is a two-component vector. The partition function is for instance given by

ZeE0L =
∑

n

e−(En−E0)L = 1 +
∑

k

e−ω(k)L + O(e−2mL) . (A.5)

– 10 –
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but to the order we are working at, we can use ZeE0L =1. We are thus lead to the expression

K1 =
1

βL2

∑

k

e−ω(k)L
(

〈Ψ1(k)|
∫

d3x θ̂00(x)|Ψ1(k)〉 − 〈Ψ0|
∫

d3x θ̂00(x)|Ψ0〉
)

+ . . . (A.6)

Using eq. (2.5), we obtain

〈Ψ1(k)|
∫

d3x θ̂00(x)|Ψ1(k)〉 − 〈Ψ0|
∫

d3x θ̂00(x)|Ψ0〉 = ω(k) − 1

4

m

ω(k)

∂

∂β
(mβ) .

Using the Poisson summation formula and performing the integral, one finds

K1 =
1

2πβ

∑

n

e−m
√

y2
n+L2

√

y2
n + L2

[

−1

4
m∂β(mβ) (A.7)

+
L4m2 − y2

n(1 + m
√

y2
n + L2) + L2(2 + m2y2

n + 2m
√

y2 + L2)

(y2
n + L2)2

]

.

Here yn ≡ Ln and n ∈ Z2. It is now obvious that the terms with n 6= 0 are subleading

and can be dropped, hence

K1 =
e−mL

2πβL3

[

2 + 2mL + m2L2 − 1

4
mL2 ∂

∂β
(mβ)

]

+ O(e−2mL) . (A.8)

Since we are assuming that mL ≫ 1, we can always replace the momentum sum for a

direction of size L by an integral, 1
L

∑

k →
∫

dk
2π . The corrections to this are suppressed by

e−mL, as just shown. It is therefore clear from their definitions that K2 = K3 to this accu-

racy. These expressions are calculated in the same fashion as K1, using this time eq. (2.7).

The contribution of the |Ψ1(k)〉 states reads

K2 = − m

4β

∫

d2k

(2π)2
e−ω(k)L

[

2ω(k)

m
+

β∂βm − m

ω(k)

]

+ . . . , (A.9)

which leads to eq. (3.9).

B Calculation of J1,2,3

The derivation follows closely that of appendix A. The spectral representation for J1 is

J1 =
1

βL2 Z eE0L

∑

n≥1

(

〈Ψn|
∫

d3x θ̂(x)|Ψn)〉 − 〈Ψ0|
∫

d3x θ̂(x)|Ψ0〉
)

e−(En−E0)L . (B.1)

We use eq. (2.6) to reach the expression

J1 =
m

β
(m + β∂βm)

∫

d2k

(2π)2
e−ω(k)L

ω(k)
(B.2)

Performing the momentum integral leads to eq. (3.11). It is clear that the Ji only differ

by the size of the spatial dimensions transverse to the dimension of size β (they are either

– 11 –
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of size L or infinite). Since we assume mL ≫ 1, this difference is subleading, as can easily

be seen by using the Poisson summation formula.

As for I0, the same definition as eq. (B.1) holds, except that the states live on an

L × L × L hypercube. Therefore we get (for a degeneracy ν0 of 1 and setting ω(k) =
√

k2 + m2
0, where m0 is the mass gap)

I0 = m2
0

∫

d3k

(2π)3
e−ω(k)L

ω(k)
=

m3
0

2π2L
K1(m0L) . (B.3)

For bosonic degrees of freedom, the same calculation applies to the Ik, neglecting terms of

order e−2m0L. Therefore all Iµ are equal. Indeed all directions are truly symmetric if the

boundary conditions are periodic. For fermions, strictly speaking the boundary condition

has to be antiperiodic in all directions for the same to apply. Indeed it is for antiperiodic

boundary conditions that the path integral computes the trace over states.
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